Embodied Active Domain Adaptation for Semantic Segmentation via Informative Path Planning

نویسندگان

چکیده

This work presents an embodied agent that can adapt its semantic segmentation network to new indoor environments in a fully autonomous way. Because networks fail generalize well unseen environments, the collects images of environment which are then used for self-supervised domain adaptation. We formulate this as informative path planning problem, and present novel information gain leverages uncertainty extracted from model safely collect relevant data. As adaptation progresses, these uncertainties change over time rapid learning feedback our system drives different Experiments show method adapts faster with higher final performance compared exploration objective, successfully be deployed real-world on physical robots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Informative Path Planning for Active Classification on UAVs

We propose an informative path planning (IPP) algorithm for active classification using an unmanned aerial vehicle (UAV), focusing on weed detection in precision agriculture. We model the presence of weeds on farmland using an occupancy grid and generate plans according to information-theoretic objectives, enabling the UAV to gather data efficiently. We use a combination of global viewpoint sel...

متن کامل

Unsupervised Domain Adaptation for Semantic Segmentation with GANs

Visual Domain Adaptation is a problem of immense importance in computer vision. Previous approaches showcase the inability of even deep neural networks to learn informative representations across domain shift. This problem is more severe for tasks where acquiring hand labeled data is extremely hard and tedious. In this work, we focus on adapting the representations learned by segmentation netwo...

متن کامل

Adaptive Informative Path Planning in Metric Spaces

In contrast to classic geometric motion planning, informative path planning (IPP) seeks a path for a robot to sense the world and gain information. In adaptive IPP, the robot chooses the next sensing location conditioned on all information acquired so far, and the robot’s goal is to minimize the travel cost required for identifying a true hypothesis. Adaptive IPP is NP-hard, because the robot m...

متن کامل

Multi-robot informative path planning for active sensing of environmental phenomena: a tale of two algorithms

A key problem of robotic environmental sensing and moni-toring is that of active sensing: How can a team of robotsplan the most informative observation paths to minimizethe uncertainty in modeling and predicting an environmen-tal phenomenon? This paper presents two principled ap-proaches to efficient information-theoretic path planning basedon entropy and mutual informat...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE robotics and automation letters

سال: 2022

ISSN: ['2377-3766']

DOI: https://doi.org/10.1109/lra.2022.3188901